THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH3070 Introduction to Topology 2017-2018 Tutorial Classwork 2

1. Let (X, \mathfrak{T}_X) and (Y, \mathfrak{T}_Y) be two topological spaces. The product topology on $X \times Y$ is defined by

 $\mathfrak{T}_{X \times Y}$ = the topology generated by the base $\{U \times V \mid U \in \mathfrak{T}_X, V \in \mathfrak{T}_Y\}$

Let $A \subset X$ and $B \subset Y$. Show that $\mathfrak{T}_X|_A \times \mathfrak{T}_Y|_B = \mathfrak{T}_{X \times Y}|_{A \times B}$.

- 2. Let (X, \mathfrak{T}_X) be a topological space. Suppose that $A \subset Y \subset X$. Show that if $A \subset Y$ is closed in $(Y, \mathfrak{T}_X|_Y)$ and $Y \subset X$ is closed in (X, \mathfrak{T}_X) , then A is closed in (X, \mathfrak{T}_X) .
- 3. Let $f: (X, \mathfrak{T}_X) \to (Y, \mathfrak{T}_Y)$ be a surjective continuous function. Suppose D is a dense subset in X.
 - (a) Show that f(D) is also dense in Y.
 - (b) * If E is a dense subset in Y, is $f^{-1}(E)$ necessarily dense in X?